
Barriers to Creating a Secure MPI �

Ron Brightwell David S. Greenberg Brian J. Matt George I. Davida
Massively Parallel Computing Research Laboratory Department of Computer Science

Sandia National Laboratories University of Wisconsin-Milwaukee

P.O. Box 5800 M.S. 1110 P.O. Box 784

Albuquerque, NM 87185-1110 Milwaukee, WI 53201

[bright,dsgreen,bjmatt]@cs.sandia.gov davida@cs.uwm.edu

Abstract

This paper explores some of the many issues in develop-
ing security enhanced versions of MPI.

The problems that arise in creating a security enhanced
MPI for embedded real-time systems supporting the De-
partment of Defense’s Multi-level Security policy (DoD
MLS) are presented along with the preliminary design for
such an MPI variant.

In addition some of the many issues that need to be ad-
dressed in creating security enhanced versions of MPI for
other domains are discussed.

1 Introduction

The Message Passing Interface (MPI) has become thede
factostandard for message passing in high performance par-
allel and distributed computing environments. As such MPI
must deal with an wide spectrum of systems and security
policies / environments.

These systems include single site machines ranging in
scale from small MPP avionics systems for the Military [15]
to extremely large MPP systems. In addition the systems
can be distributed in nature, for example small collections
of large machines [9]. Even large distributed collections of
very modest machines with high latency have many uses.

The security requirements of MPI users also span a wide
spectrum, from high assurance systems enforcing strict
well-defined security policies, such as DoD MLS [16] and
related policies (such as DoE policies), to corporate policies
and security policies of universities.

The work that needs to be done to address such diverse
range of systems has not been part of the MPI-1 standard
work [13] or the on-going MPI-2 process [14]. Previous

�This work was supported in part by DARPA under ARPA Order No.
C974.

work in adding security features to MPI by Foster et. al. [9]
has focused on adding security features to protect communi-
cation traffic both as part of process creation and for “com-
putational” traffic.

Our work is currently focused on providing a version
of MPI suitable for embedded real-time systems using the
DoD MLS security policy. Systems of this type intro-
duce problems for MPI implementations, including unidi-
rectional message passing between certain processes. Many
of the flavors of MPI message passing, both point-to-point
and collective, were not designed to be compatible with uni-
directional connections. Additions to MPI were necessary
to deal with an external (to the process) specification of the
process’ “security environment” that is provided by the sys-
tem. Also, extensions to the group / communicator API are
required to allow MPI applications to create communicators
that conform to “security contexts”.

In addition to the above work we are exploring issues
in creating secure MPI implementations suitable for other
domains, including MPI-2 features for process creation and
real-time.

In Section 2 we give a brief overview of MPI followed by
a description in Section 3 of an SMPI design for embedded
real-time systems supporting the DoD MLS security pol-
icy. In Section 4 we will present issues that are outside the
context of embedded MLS systems and need to be explored
before a more general SMPI can be created.

2 MPI

Readers desiring an in-depth description of MPI may
wish to read the standard[13] or any of the summary refer-
ences listed at http://www.mcs.anl.gov/mpi/mpich. In this
section we concentrate on just a few features which have
particular repercussions for attempts to create secure ver-
sions of MPI.

A defining feature of MPI is its ability to provide safe
message passing contexts, or communicators, within a

group or subgroup of processes. Communicators can be
utilized by layered libraries to preclude the possibility of
messages interfering with each other. Secure implementa-
tions may wish to interact with the communicators to add
enforcement to the defined separation. The implementation
of communicators is typically through collective communi-
cation among the processes involved.

MPI is typically implemented as a library which is linked
to user code at compile or runtime. The library nature of
MPI allows for flexible insertion of MPI variants and there-
fore allows easy experimentation with secure variants.

The core of MPI is, of course, its facilities for data move-
ment. MPI supplies both point-to-point and collective data
movement operations. In order to provide flexibility and
capture as much of the pre-existing semantics as possible
within a single standard, it defines several distinct seman-
tics and progress rules for these data movement functions.
While these semantics do not explicitly mandate a specific
implementation, any secure implementation will have to ad-
dress implications such as synchronization and acknowl-
edgments within the protocols which realize the semantics.

We briefly describe the completion semantics of the dif-
ferent modes of peer communication defined within MPI.
We concentrate on the need for acknowledgments, the need
for synchronization, and the use of buffering.

In the standard mode, a send might begin before a match-
ing receive is posted, but completion of the operation may
also depend on the occurrence of a matching receive. It is
left to the implementation to decide where and if standard
mode send messages are buffered.

Likewise, the completion of a synchronous send is non-
local, and is guaranteed to complete only after a matching
receive operation has begun at the destination. Thus, this
communication mode can be used as a rendezvous point.

The ready send mode offers an opportunity for optimiza-
tion by insuring that a matching receive has been posted,
possibly eliminating some of the protocol overhead needed
by standard mode sends. Completion of a ready send is lo-
cal.

Likewise, completion of a buffered send operation is also
local. In this mode, the sender provides space to buffer out-
going messages so that the completion is independent of any
action at the destination. The operation can finish whether
or not a matching receive has been posted.

There are also some additional semantics mandated by
the progress rules of non blocking communication that force
both the sender and receiver to coordinate to insure proper
completion of certain operations.

In addition to point-to-point communication, MPI con-
tains several collective communication operations which
provide the ability to do broadcast, gather, scatter, and re-
duction operations across a group of processes. As with
point-to-point messages from different communicators, col-

lective communication messages are guaranteed not to in-
terfere with point-to-point messages within the same com-
municator. Within each communicator there is a safe mes-
sage passing subspace for both peer and collective commu-
nication.

3 SMPI for Embedded Real-time MLS
Systems

In this section we present a version of MPI suited for use
in a embedded real-time system that implements the DoD
MLS security policy: the PROSE operating system [15].
First we briefly describe the PROSE system and then the
design and implementation of this version of SMPI. The
PROSE system is a secure real-time operating system being
developed by Hughes Aircraft, Intel and Sandia National
Laboratories under DARPA sponsorship. For further details
on this project see [15]. Here we summarize the current
design for message passing and other aspects of PROSE that
are relevant to SMPI.

3.1 The System

PROSE utilizes the System Build [1] approach devel-
oped by TIS and Hughes to provide access mediation at
build and initialization time, rather than at run time. The
Privilege Control Table Toolkit (PCT Toolkit) [10] produces
a Privilege Control Table (PC Table) for each binary image
that contains:

� A list of access privileges

� A mapping of each process that is visible to the image
to its corresponding subject.

Applications are composed of one or more subjects, each
of which may be at a different security level or compart-
ment. Each subject is composed of one or more processes.
A process’ PC Table supplies information that allows it to
send messages to those processes outside of its own sub-
ject. Messages to processes within the same subject are not
mediated by the PROSE kernel, and therefore no PC Table
information is required. All mediation by the PROSE kernel
is done at message generation time rather than at message
reception.

3.2 Implications

MPI was not designed to operate in environments such
as the PROSE system. In our work we have incountered the
following issues:

Unidirectional flows
The designers of MPI assumed that all communication

channels between processes are bidirectional. However, as
seen above in the PROSE system, this is not the case1.

Strict unidirectional links pose problems for MPI imple-
mentations. For example, the synchronization that exists
between sender and receiver in certain modes of point-to-
point communication is not compatible with unidirectional
links. Note that the impact is at two levels; one is what the
application code must see to conform to the MPI semantics,
and the other is what might be available to the application
because it is available to the application’s MPI implementa-
tion. Unless the MPI implementation is protected from the
application, one must conservatively assume that all infor-
mation available to an MPI implementation is also available
to the application. Hence, any message, including control
messages between MPI implementations that can be modu-
lated by the receiver application, is a problem. Examining
the modes of MPI point-to-point one observes:

� Buffered Mode In this mode the sender application
declares a buffer to MPI to manage on the sender’s
behalf. The receiver can affect the state of the buffer
by how it receives messages. Since an error occurs if
there is insufficient space in the buffer, the sender re-
ceives information from the receiver, therefore the link
is not unidirectional. Depending on the implementa-
tion there may be still more information available to
the sender.

� Synchronous ModeIn this mode the send operation
will only complete sucessfully if a matching receive
operation has been posted. This creates information
flow back to the sender.

� Ready ModeThe semantics of ready mode do not re-
quire any information about the state of the receiver
to be known by the sender. However, ready mode
is an optimization opportunity of which the MPI im-
plementation may choose to take advantage. Because
its semantics are equivalent to that of standard mode
and since the opportunity for optimization may not ex-
ist, many implementations simply make ready mode
equivalent to standard mode.

� Standard Mode The semantics of standard mode
point-to-point communication are flexible enough to
allow communication without information flow back
to the sender, provided infinite buffering at the receiver
is assumed. Throttling of standard sends when the re-
ceiver is non-responsive induces back communication.

1Unidirectional flows appear on other security policies such as the Chi-
nese Wall security policy [3, 17]. Violations of unidirectional flows are
considered less of a problem in embedded systems than they are in general
purpose systems.

� Cancelling send requests2 The success or failure of
cancelling any nonblocking send request depends upon
being able to determine the state of the message at
the receiver. Unsuccessful cancellation means that the
data will be received with no further assistance from
the sender. This implies that the message has already
been received, or that it has been successfully buffered
at the receiver. Successful cancellation of a send op-
eration means that the message has not yet been re-
ceived3 by the receiver. Both of these results provide
some knowledge as to the state of the receiving pro-
cess.

A secure implementation will have to either restrict the se-
mantics of MPI data transfer or determine some other way
to provide synchronization-like behavior, or accept the re-
sulting backward information flow.

Strict unidirectional links would also impact how new
MPI communicators are created, and how barrier syn-
chronizations are performed. Implementations such as
MPICH [11] would not work in a strict model. Either col-
lective operations will have to be implemented to obey the
directed nature of links (i.e. more tree-like) or some means
of suitably restricting the back traffic will have to be found.

Security Identifiers
Consider an MLS environment with two sets of processes.
One set runs at the secret level and the other set runs at the
top secret level. The secret level processes take data from
some source, perform some transformation on that data, and
pass the results to the top secret processes.

What should MPICOMM WORLD look like for each
set of processes? If every process’ MPICOMM WORLD
includes both the secret and top secret processes then
the MPI collective operations will break when applied to
MPI COMM WORLD.

If MPI COMM WORLD for each level process includes
only the processes at that level then MPICOMM WORLD
no longer represents “all the processes with which the local
process can communicate.”

Now extend this example to a pipeline consisting of three
subjects, each at a different level. In addition to the ques-
tion of what MPICOMM WORLD should look like for
this more complex example, there is a question of how each
subject identifies the other two subjects when establishing
or initiating communication.

2In most implementations, cancelling a send request is a nontrivial op-
eration, partly due to a lack of completeness in definition in the standard.
Few implementations support cancelling send requests, and such practice
is generally discouraged by implementors.

3Or, in some cases, not yet probed.

3.3 Current Implementation

The MPI library (and hence the application) has to be
given some way of determining the subject boundaries of
the application. The PCT Toolkit provides this information
to the MPI library through the use of a subject map table
which maps application ranks to subjects. A process need
only traverse this table in order to find the other ranks which
are in its subject. This mapping makes it possible for the
MPI library to determine the communication protocols for
each destination rank.

Several mechanisms were considered for the way in
which MPI obtains this table. Rather than rebuild the MPI
library for each binary image or add an additional function
call, the MPI library uses an external storage declaration
that is resolved at link time with object code built from
source code generated by the PCT Toolkit for each binary
image within an application.

The MPI library must also be provided with a capabil-
ity index for each destination rank which is outside of the
sending process’ subject. The MPI library again uses an
external storage declaration for this mapping of destination
rank to capability index which is resolved at link time by
code generated by the PCT Toolkit for each binary image
within an application. This approach allows the MPI library
to be built only once for all of the applications in the sys-
tem. Using destination rank to access the capability indexes
allows for every application to obtain indexes in the same
manner. Even though the method used to obtain an index
is the same for all applications, the actual data stored in the
index array will be different for each subject. This method
also eases debugging in an environment that is absent of the
PCT Toolkit.

In order to provide a more usable interface to
the application programmer, the secure MPI library
on PROSE provides an additional communicator,
MPI COMM SUBJECT, which encompasses all of
the ranks within the application that are in the same
subject as the calling process. MPICOMM SUBJECT is
essentially equivalent to the following:

MPI_Comm_split(MPI_COMM_WORLD,
my_subject_id,
my_rank,
&MPI_COMM_SUBJECT);

Since unidirectional flows may exist between sub-
jects, a multilevel application will no longer rely
upon MPICOMM WORLD to provide a communica-
tion capability to all ranks. However, the meaning
and use of MPICOMM WORLD will not change for
unilevel applications. That is, MPICOMM WORLD and
MPI COMM SUBJECT will be equivalent for single sub-
ject applications.

Communication will be established between two sub-
jects by utilizing the MPIIntercommcreate function
or by some analogous MPI extension. The use of
MPI COMM WORLD may be restricted to only providing
a means of mapping from local ranks to global ranks.

At initialization, the library will interpret the subject
mapping, set up protocols for each rank in the application,
and prepare the process to receive MPI messages. We are
currently investigating the protocols needed to implement
the various flavors of MPI communication modes. The cur-
rent implementation of MPI [4] assumes a unilevel applica-
tion and makes extensive use of acknowledgments and re-
mote memory reads. These mechanisms may not be avail-
able in a multilevel application containing subjects at dif-
ferent security levels. The ability to remotely read another
process’ memory has some very overt security implications.
Similarly, mechanisms such as acknowlegdments form the
basis upon which a covert channel may be built. Conse-
quently, some of the different MPI send modes may not
be possible, or may be restricted in some way in order to
minimize the possibility or effectiveness of security related
attacks. Once the protocols have been established, a bar-
rier synchronization operation across all of the processes
belonging to the same subject will be performed, insuring
that each process is ready to receive MPI messages.

Since it is nontrivial to efficiently implement MPI col-
lective operations in a multilevel application with unidi-
rectional flows, collective operations will be disabled on
MPI COMM WORLD. We are currently assuming MPI-1
functionality where it is illegal to do collective operations
using an intercommunicator. We may choose to adopt the
MPI-2 specification for intercommunicator collective oper-
ations at a later point.

4 Future Directions: Addressing Other
Domains

Embedded real-time MLS systems represent only a small
portion of all the systems that use MPI. Here are just a few
of the issues that arise in other systems.

Is the application code considered trusted by the system?
If it is then the application code can direct MPI to provide
very fine grain protection of message traffic. One approach
being considerd for MPI under this project is to create pro-
tected data types analogous to current MPI datatypes, sim-
ilar to what was done with buffer encoding types in Secure
PVM [8]. This approach can be used to provide different
protection for control and data messages, see “Control and
Data” below and also [9].

If the application code is not trusted, what parts if any
of MPI should be protected from it? There are advantages
to having MPI provide enforcement of a security policy.
For example if the underlying operating system does not

provide cryptographic support for network traffic, or only
supports point-to-point messaging, then considerable per-
formance improvements can be realized by having MPI pro-
vide cryptographic protection. Allowing parts of MPI to be
trusted make it a candidate to apply some innovative cryp-
tographic techniques to both the privacy and authenticity of
messages, see “Cryptographic Issues” and “Enforcement”.
However, MPI implementations are typically not developed
using the methods for high assurance systems development.

Process creation in multi-host systems becomes a very
complex issue as the diversity of the hosts increases. The
negotiating of communication security between the new and
existing processes is a more complex problem than what
ISAKMP [12] addresses, since the current processes may
not have homogeneous capabilities. There are other com-
plexities such as the differing trust relationships between
the hosts, differences in internal security functionality of
the hosts, and protection requirements that differ in com-
plex ways between runs of the same application code, see
“Hetergenous Security” and “Protection Specification”.

The performance of MPI applications will strongly influ-
ence the level of security/authenticity that can be achieved.
It is conceivable that for some applications where very high
performance is needed, the security that can be achieved (at
costs that are commensurate with the application) may not
be high. Such tradeoffs need to be studied and parameter-
ized with respect to applications, policies and environments.
Employing innovative cryptographic techniques will hope-
fully have significant impact on the the level of protection
that is affordable.

Heterogeneous Security
Security policies and enforcement mechanisms that are con-
sidered need to be designed for environments that include a
range of security levels and mechanisms. In some cases pro-
grams that are run on a high security may need at times to
“borrow” systems across networks that may have a different
security profile. It should be possible to run such programs
without the need to recompile or reconfigure them. Such
a capability needs to have the means for client and server
programs to have the power of discovery as to the identity
and security of their environments. Once a program has de-
termined the security requirements and security capabilities
of its environment, and the needed security related “clear-
ances” at the remote objects, it can invoke the appropriate
functions to protect, prove or verify identity.

Control and Data
It is necessary to consider the different needs for security
and authenticity of control information and data that will
flow across the networks. Each will have its own secu-
rity needs and the mandated enforcement mechanisms. For
some applications, the data privacy will be of utmost im-
portance, while in some cases the security / authenticity of
control information will also be important. The MPI inter-

face provides an ideal environment to consider the separa-
tion of control information from the data. Similar to tele-
phony, where voice and control information are routed on
different lines, we consider the data and control flowing to
a process (client or server) via entirely different paths. In
fact, the separation of control and data paths will be neces-
sary to provide different levels of protection. We then need
to consider the binding of data to control. New primitives
may have to be considered for MPI to implement this type
of separation.

Cryptographic Issues
In considering enforcement mechanisms, it is necessary to
consider the performance of such things as encryption hard-
ware that is needed for privacy and verification of authen-
ticity. Depending on the security profile of the workstations
and servers, it is conceivable that different cryptographic
hardware will be needed. It may be feasible to consider
tamper resistant hardware in some applications where sym-
metric encryption can be used for authentication instead of
a public key cryptosystem [7, 5]. Such options can signif-
icantly improve the performance of the systems. In some
systems, tamper resistance may have the same qualitative
enforcement properties as a public key system such as the
RSA.

The privacy and authentication issues raised by MPI will
require the study of different cryptographic techniques that
may be needed for the many applications and security re-
quirements. For broadcast messages, it may be feasible to
use cipher-buses (where multiple messages are encrypted
into a common ciphertext) to be sent to multiple clients,
with each client decrypting what it is capable of decrypt-
ing [6]. The attraction of such systems is that individual en-
crypted messages do not even have distinguishable bound-
aries. This may make it difficult for detection of such mes-
sages for possible attacks.

Enforcement
In certain security policies, ordinary applications are trusted
not to attempt to bypass security controls of the system or
otherwise weaken the security of the system. In other poli-
cies, this is not the case. If th application is not trusted,
then the issue of what role, if any, MPI can play inenforc-
ing a security policy is of interest. This enforcement may
include restricting where an application may send a mes-
sage or what cryptographic protection must be applied to
messages to particular destinations.

Such enforcement within the current MPI structure will
be difficult. In order for a mechanism within MPI to be
able to restrict the action of an application it must be tam-
per proof, un-bypassable, and always enforced. Typically,
enforcement is provided with some hardware help. Mod-
ern microprocessors provide two crucial hardware protec-
tions: supervisor mode and address space separation. MPI
is currently implemented as a user-level, compile or runtime

linked library. Since it inherits the user’s privileges and runs
in the same address space, it cannot use the hardware sup-
port to directly prevent the user from taking actions, includ-
ing disabling controls within MPI.

Versions of Secure MPI that do not trust their applica-
tions and need to depend on SMPI for enforcement will
thus have to explore alternate approaches. One approach
is to build the applications using special code generation
techniques [19] combined with strong integrity controls be-
ing used on the result. This approach has the advantage of
maintaining the user-level nature of MPI but risks degrading
performance.

Other approaches include eliciting the aid of the operat-
ing system kernel, trusted servers, and/or special message
passing hardware. By exploring these options one can en-
vision versions of MPI with portions of the “library” in a
protected unbypassable portion of the system that is always
invoked properly and the portions of this SMPI that are not
security critical residing in user space.

Such relationships are not uncommon, an example is the
relationship between the OS and user-level code that ex-
ists in Puma[18] portals. In Puma portals, message passing
responsibility is shared between user-level libraries which
set up the required portal structures and supervisor-level OS
kernel functions which perform the data transfer and which
can enforce access controls.

A similar approach to this “split MPI” is by implement-
ing security critical portions of SMPI within a Myrinet[2]
LANAI control program.

Protection Specification.
Specifing how to protect communications is a complex task;
for example:

� Traffic moving between the the nodes of a MPP ma-
chine would likely require no cryptographic protec-
tion. On a local network, the same traffic may require a
certain level of protection, and the same traffic moving
accross the Internet may require still another (higher)
level of protection.

� The protection required will vary depending on the
problem being solved. While the application code may
not change, only the data being used and and generated
requires a change in protection level. Another possi-
bility is that the algorithm (code) needs to be protected
while the data does not, or the data only requires min-
imal protection.

� Certain portions of an application may require differ-
ent levels of protection than others. For example, a
system that is composed of a proprietary subsytem and
other less sensitive subsystems. A simulation of such a
system may need to strongly protect only what pertains
directly to the proprietary subsystem. It is assumed

that an adversary could not cost-effectively deduce the
proprietary information from the other portions of the
simulation.

Protection specification can be combined with the discov-
ery process discussed earlier to arrange for the proper cryp-
tographic techniques to be used.4

There are still other issues that need to be addressed in
developing secure MPI variants such as key management
and how best to provide security for MPI applications not
written for SMPI

5 MPI-2 and MPI Real-time

The recently approved MPI-2 document extends the
functionality of MPI in many different areas, providing an
interface for the following:

� dynamic process spawning

� dynamic process attachment

� one sided communications

� extended collective operations

� parallel I/O

These additional features have security implications
which need to be addressed, not only to discover the possi-
ble places in which security features need to exist, but also
to identify possible mechanisms for implementing these
features. For example, dynamic process spawning will
most likely require some form of authentication, which may
make use of theMPI INFO mechanism or thempiexec
process startup mechanism.

The ongoing MPI Real-time (MPIRT) effort is an at-
tempt to leverage the functionality of MPI in real-time
and embedded systems. Unlike previous MPI standards,
MPIRT’s basic building block for communication is a chan-
nel, which is a unidirectional communication pipe upon
which a quality of service can be obtained. Again, fur-
ther investigation is needed to determine the security issues
and available mechanisms for conveying security informa-
tion associated with these channels.

6 Remarks

The reader needs to be aware that there are limits to how
secure a system can be simply by enhancing MPI. Other as-
pects of the system, in particular the operating system and
proper administration have a large role to play. In addi-
tion, the security policy enforced by the system must be

4This specification can go further, it may include mininum Common
Cirteria ratings for systems to be used for a computation.

the correct one for the needs of the system’s users and the
(threat) environment in which it operates. The environment
in which a system operates is a constantly evolving one.
While many users only need to worry about the prevalent
threats of today, other users and system developers need to
worry about tomorrow’s threats as well.

7 Acknowledgements

The authors would like to acknowledge the many con-
tributions of the members of the JRTOS team from Hughes
Aircraft Company, Intel Corporation, and Sandia National
Laboratories.

References

[1] J. P. Alstad et al. The role of system build in trusted embed-
ded systems. InProceedings of the 13th National Computer
Security Conference, volume 1, Oct. 1990.

[2] N. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet-a gigabit-
per-second local-area network.IEEE Micro, 15(1):29–36,
February 1995.

[3] D. F. Brewer and M. J. Nash. The Chinese wall security
policy. In Proceedings 1989 IEEE Computer Society Sym-
posium on Security and Privacy, pages 206–214, May 1989.

[4] R. Brightwell and L. Shuler. Design and implementation of
MPI on Puma portals. InProceedings of the Second MPI
Developer’s Conference, pages 18–25, July 1996.

[5] G. I. Davida and B. J. Matt. Arbitration in tamper proof
systems. InProceedings Advances in Cryptology - Crypto
’87, pages 216–222, Aug. 1987.

[6] G. I. Davida, D. L. Wells, and J. B. Kam. A database en-
cryption system with subkeys.ACM Transaction on Data
Bases, 6(2), 1981.

[7] Y. Desmedt and J.-J. Quisquater. Public-key systems based
on the difficulty of tampering. InProceedings Advances in
Cryptology - Crypto ’86, pages 111–117, Aug. 1986.

[8] T. Dunigan and N. Venugopal. Secure PVM. Technical
Report ORNL/TM-13203, Oak Ridge National Laboratory,
August 1996.

[9] I. Foster, N. T. Karonis, C. Kesselman, G. Koeing,
and S. Tuecke. A Secure Communications Infrastruc-
ture for High-Performance Distributed Computing, 1996.
http://www.mcs.anl.gov/zipper.

[10] R. Gotfried and T. Woodall. PCT toolkit: An implementa-
tion of the system build approach. InProceedings of the 19th
National Information System Security Conference, October
1996.

[11] W. Gropp, E. Lusk, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI
Message Passing Interface Standard, July 1996.
http://www.mcs.anl.gov/mpi/mpicharticle/paper.ps.

[12] D. Maughan, M. Schertler, M. Schneider, and J. Turner.
Internet Security Association and Key Management Pro-
tocol (ISAKMP), February 1997. ftp://ietf.org/internet-
drafts/draft-ietf-ipsec-isakmp-07.ps.

[13] Message Passing Interface Forum. The Mes-
sage Passing Interface Standard, November 1995.
http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html.

[14] Message Passing Interface Forum. MPI-2: Exten-
sions to the Message Passing Interface, October 1996.
http://www.cs.wisc.edu/~ lederman/mpi2/mpi2-report.ps.Z.

[15] H. Nag, R. Gotfried, D. Greenberg, C. Kim, B. Maccabe,
T. M. Stallcup, G. Ladd, L. Shuler, S. Wheat, and D. van
Dresser. PROSE: Parallel Real-time Operating system for
Secure Environments. InIntel Supercomputing ’96 Proceed-
ings, June 1996.

[16] National Computer Security Center, DoD.Department of
Defense Trusted Computer System Evaluation Criteria, De-
cember 1985.

[17] R. Sandhu. A lattice interpetation of the Chinese Wall Pol-
icy. In Proceedings 15th NIST-NCSC National Cimputer Se-
curity Conference, pages 329–339, Oct. 1992.

[18] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Mac-
cabe, L. A. Fisk, and T. M. Stallcup. The Puma operating
system for massively parallel computers. InProceeding of
the 1995 Intel Supercomputer User’s Group Conference. In-
tel Supercomputer User’s Group, 1995.

[19] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. InProceedings 14th
ACM Symposium on Operating Systems Principles, pages
203–216, Dec. 1993.

